US009386015B2

a2 United States Patent

Jasper et al.

US 9,386,015 B2
*Jul. §,2016

(10) Patent No.:
(45) Date of Patent:

(54) SECURITY MODEL FOR INDUSTRIAL
DEVICES
(71) Applicant: Rockwell Automation Technologies,
Inc., Mayfield Heights, OH (US)
(72) Taryl J. Jasper, South Euclid, OH (US);
Michael B. Miller, West Allis, WI (US);
Robert A. Brandt, Menomonee Falls,

WI (US)

ROCKWELL AUTOMATION
TECHNOLOGIES, INC, Mayfield
Heights, OH (US)

Inventors:

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.
2D 14/693,376

(22)

Appl. No.:

Filed: Apr. 22, 2015

(65) Prior Publication Data

US 2015/0229640 A1 Aug. 13, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/934,701, filed on
Jul. 3, 2013, now Pat. No. 9,043,600, which is a
continuation of application No. 12/905,676, filed on

Oct. 15, 2010, now Pat. No. 8,504,837.

Int. Cl1.
HO4L 9/32
HO4L 29/06
GO6F 21/34

(51)
(2006.01)
(2006.01)
(2013.01)

(52) US.CL
CPC

HO04L 63/0853 (2013.01); GO6F 21/34
(2013.01); HO4L 63/20 (2013.01)

Field of Classification Search

CPC ... GO06Q 20/367; GO7F 7/08

USPC 713/172

See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

7,657,932 B2* HO4L 63/0823

713/172

2/2010 Ballinger

2004/0093515 Al 5/2004 Reeves et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1889452 A 1/2007

™ 201032597 9/2010

WO 2008116760 A2 10/2008
OTHER PUBLICATIONS

Protocol Buffers—Developer Guide http://code.google.com/apis/
protocolbuffers/docs/overview.html. Last accessed Feb. 15, 2011. 4
pages.

(Continued)

Primary Examiner — Anthony Brown
(74) Attorney, Agent, or Firm — Amin, Turocy & Watson,
LLP

(57) ABSTRACT

Systems and/or methods are described relating to a security
model that provides interoperability with foreign security
domains while remaining scalable to small embedded
devices. A security token service is provided, which is con-
figured to issue, renew, and/or validate security tokens in
response to a token request. A communication protocol, cor-
responding message structures, and the security tokens are
defined in accordance with protocol buffer definitions.

20 Claims, 10 Drawing Sheets

[100

SECURITY APPARATUS

COMPONENT
AUTHENTICATION
COMPONENT
PROTOCOL

|,—20

TOKEN
GENERATION

BUFFER

CRYPTOGRAPHY

COMPONENT

]
5
2
8
3
g
%
4
2
S
e
5
g
Tl

210

USER
CREDENTIALS

PROTOCOL
BURFER T
USER
INTERFACE ACCESS |
CONTROL

CRYPTOGRAPHY
COMPONENT

VB Pt}
)T SECTRITY)
1 TOKEN]

COMPONENT

REQUESTER

US 9,386,015 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0128542 Al
2004/0128543 Al

7/2004 Blakley et al.
7/2004 Blake et al.

2006/0005234 Al* 1/2006 Birkcccc..... HO4L 63/0815
726/9

2009/0007253 Al 1/2009 Chung et al.
2009/0271012 Al* 10/2009 Kopka GOGF 17/30905
700/83
2010/0268952 Al* 10/2010 Chung HO04L 9/3236
713/170
2011/0131643 Al* 6/2011 Lawrence HO04L 9/3213
726/10

OTHER PUBLICATIONS

Protocol Buffers—FAQ http://code.google.com/apis/

protocolbuffers/docs/faq.html. Last accessed Feb. 15, 2011. 2 pages.
Oasis WS—Trust 1.4. Feb. 2, 2009. http://docs.oasis-open.org/ws-
sxlws-trusllvl.4/os/ws-trust-1.4-spec-os.pdf. Last accessed Feb. 15,
2011, 85 pages.

Oasis—Web Services Security: SAML Token Profile. Oasis Stan-
dard, Dec. 1, 2004. http://docs.oasis-open.org/wss/oasis-wss-saml-
token-profile-1.0.pdf. Last accessed Feb. 15,2011, 31 pages.
European Search Report for European Patent Application No.
EP11185481 dated Feb. 28, 2012, 6 pages.

Office Action for U.S. Appl. No. 12/905,676, dated Jul. 20, 2012, 33
pages.

Office Action for U.S. Appl. No. 12/905,676, dated Jan. 7, 2013, 22
pages.

Office Action for U.S. Appl. No. 13/934,701, dated Aug. 6, 2014, ??
pages.

Chinese Office Action for Chinese Application No. 201110323926.0
dated Oct. 29, 2013, 28 pages.

Chinese Office Action for Chinese Application No. 201110323926.0
dated Sep. 12, 2014, 6 pages.

U.S. Appl. No. 13/934,701, filed Jul. 3, 2013.

U.S. Appl. No. 12/905,676, filed Oct. 15, 2010.

European Office Action for Furopean Patent Application No.
EP11185481 dated Feb. 16, 2016, 5 pages.

Taiwanese Office Action dated Jul. 24, 2015 for Taiwanese Applica-
tion Serial No. 100137493, 5 pages.

* cited by examiner

U.S. Patent Jul. 5, 2016 Sheet 1 of 10 US 9,386,015 B2

/— 100

SECURITY APPARATUS
124 122
120
SECURITY prOTOCOL | [
TOKEN BUFFER
SERVICE (STS) COMPONENT
A
R it — | \ 140
(TOKENREQUEST | | | N————= —_————
——————————— | SECURITY TOKEN |
y

110
REQUESTER

FIG. 1

U.S. Patent

US 9,386,015 B2

/— 200

Jul. 5, 2016 Sheet 2 of 10
SECURITY APPARATUS
DATA 227
STORE 28
TOKEN

» GENERATION

v

COMPONENT
AUTHENTICATION | ,— 226 1
COMPONENT |
1 PROTOCOL |4~ 224
i’ BUFFER
A
,-2 ¥~ | 244
o - N~ SECORITY !
I _ REQUEST _ | v I __TOKEN |
CRYPTOGRAPHY
COMPONENT
A
232 \: o _SI_G'ﬁT_)—ZiZ_'
| |
'SIGNED ?%)%zﬁ REQUEST | | SECURITY |
----------------- ' | __TOKEN _ |
y
CRYPTOGRAPHY | {216
COMPONENT
230)

N)
| REQUEST | s 1~ SECURITY
“““““““ I TOKEN |

PROTOCOL | | ———~~~~—~——--
v BUFFER | T 214
USER —212 ¢
INTERFACE ACCESS s
- CONTROL |
COMPONENT
REQUESTER
USER
CREDENTIALS

FIG. 2

U.S. Patent Jul. 5, 2016 Sheet 3 of 10 US 9,386,015 B2

/— 300

OBTAIN CREDENTIAL 302
L~
INFORMATION FROM

A USER
GENERATE A TOKEN | — 304 N SEND THE SIGNED | — 326
REQUEST SECURITY TOKEN

v

328
VERIFY SIGNATURE {7

SERIALIZE THE TOKEN| ~— 306

REQUEST
DIGITALLY SIGN THE |, — 308 DE-SERIALIZED THE | — 330
TOKEN REQUEST SECURITY TOKEN

y
SEND SIGNED TOKEN |,— 310
REQUEST

v

312
VERIFY SIGNATURE }

RENDER ACCESS | — 332
CONTROL DECISIONS

DE-SERIALIZE THE | — 314
TOKEN REQUEST

EXTRACT THE 316
L~
CREDENTIAL
INFORMATION

v

AUTHENTICATE THE 318
L~
CREDENTIAL
INFORMATOIN

.

GENERATE A L~ 320
SECURITY TOKEN

v

SERIALIZE THE L~ 322
SECURITY TOKEN

y
DIGITALLY SIGN THE | — 324
SECURITY TOKEN

FIG. 3

U.S. Patent Jul. 5, 2016

Sheet 4 of 10 US 9,386,015 B2

’/— 400

40
PROCESSING SYSTEM MEMORY 406
UNIT <
404 ROM RAM
408 410
—>
MACHINE
INTERFACE |« PERSISTENT STORAGE
420 412
\
\
| — 424 N
SECURITY COMPONENT | |
42
426 _ || APPLICATION(S)
| 414
< |
|
|
|
| OPERATING
L
NETWORK ! SYEIT:‘M
ADAPTER |« | —
422 !
|
|
|
|
l
l
USER INTERFACE N
418
DEVICE (REQUESTER)

FIG. 4

U.S. Patent Jul. 5, 2016 Sheet 5 of 10 US 9,386,015 B2

506 —
.| DEVICE
(REQUESTER)
S12
DEVICE <
510 SECURITY
N APPARATUS
DEVICE <
> DEVICE

FIG. 5

U.S. Patent Jul. 5, 2016

DEVICE
(REQUESTER)
602

3

Sheet 6 of 10 US 9,386,015 B2

/— 600

! _— 606

SECURITY APPARATUS

GATEWAY
COMPONENT
608

CONVERTER
610

y

EXTERNAL
IDENTITY
PROVIDER(S)
612

FIG. 6

U.S. Patent Jul. 5, 2016 Sheet 7 of 10 US 9,386,015 B2

/— 700

DEVICE
(REQUESTER)
702
A
706 _\ 7
GATEWAY APPARATUS
CONVERTER
708
WS-TRUST
COMPONENT
710
712 ~
SECURITY SERVER
EXTERNAL - X
IDENTITY ’ - D lé{EEISSRRY N STS
PROVIDER(S) i d 714
718 116

FIG. 7

U.S. Patent Jul. 5, 2016 Sheet 8 of 10 US 9,386,015 B2

OBTAIN A TOKEN REQUEST FROM A | — 802
DEVICE

y

EMPLOY THE TOKEN REQUEST TO SEND| _ ¢4
A SECOND TOKEN REQUESTTO AN |
EXTERNAL IDENTITY PROVIDER

y
RECEIVE A SECURITY TOKEN FROM | — 806
THE EXTERNAL IDENTITY PROVIDER

y

CONVERT THE RECEIVED SECURITY 308
TOKEN TO FORMAT RECOGNIZABLE BY {
THE DEVICE

y

CONVEY THE CONVERTED TOKEN TO | — 810
THE DEVICE

FIG. 8

U.S. Patent Jul. 5, 2016 Sheet 9 of 10 US 9,386,015 B2

906

COMMUNICATION

~ 904
FRAMEWORK SERVER(S)

902
N CLIENT(S)

908 910

CLIENT DATA STORE(S) SERVER DATA STORE(S)

FIG. 9

U.S. Patent Jul. 5, 2016 Sheet 10 of 10 US 9,386,015 B2

/1000
1002
100
1030
PROCESSING | _— 1004 | OPERATING SYSTEM |
UNIT [| et
______________ 21082
1008 1006 | APPLICATIONS !
SYSTEM 1034
MEMORY | 1012 { MODULES !
/1 |
L A 1036
il ; DATA i
ROM [T 101(_’ _________________ ,
1024 i l— 1014 r\:'—_*——~:\4/—1014
SN
EXTERNAL
INTERFACE INTERNAL HDD _ DD/
’// 1016 ————————
1026 DD L1018
INTERFACE sk P
» 1044
2 Lt 1020 /~
@ 1028 MONITOR
INTERFACE DRIVE L1022 # 1038
1046 DIk 1
KEYBOARD
VIDEO
ADAPTER L~ 1040
/142 RED/WIRELESS) MOUSE
INPUT
1058 1054 1048
«—» DEVICE - L L
INTERFACE » MODEM » WAN [« REMOTE
COMPUTER(S
/1056 1052 :
NETWORK AN 1050
ADAPTER " (WIRED/WIRELESS) 4>
- MEMORY/
STORAGE

FIG. 10

US 9,386,015 B2

1

SECURITY MODEL FOR INDUSTRIAL
DEVICES

PRIORITY CLAIM

This patent application is a continuation of U.S. patent
application Ser. No. 13/934,701, filed Jul. 3, 2013 and
entitled, “SECURITY MODEL FOR INDUSTRIAL
DEVICES,” which is a continuation of U.S. patent applica-
tion Ser. No. 12/905,676, filed Oct. 15, 2010 and entitled
“SECURITY MODEL FOR INDUSTRIAL DEVICES” The
entireties of each are incorporated herein by reference.

TECHNICAL FIELD

The subject disclosure relates to a security model for an
industrial automation environment, and more particularly, to
an interoperable security model suitable for embedded indus-
trial automation devices.

BACKGROUND

Security is an important aspect in industrial automation
environments. Access to machines and devices within a fac-
tory or other automation environment should be controlled to
avoid unauthorized or inappropriate interactions with the
machines and devices by persons lacking proper training,
authority, or credentials. In addition, operations on machines
and devices should be strictly controlled to provide various
levels of permissions to different persons having disparate
roles with the industrial automation environment. To imple-
ment the aforementioned security features, an operator, when
accessing a machine or device in the industrial automation
environment, can supply credentials specifying an identity of
the operator. The machine or device, once the credentials are
validated, can grant rights to the operator and enable access to
features based upon permissions associated with the operator.

Commonly, industrial automation environments employ
proprietary security solutions within the environment. The
proprietary security solutions may not interoperate or trust
foreign security domains. Without interoperation, the indus-
trial automation environment resides on a security island.

In other areas, such as web services, a set of standard
security-related specifications have emerged. For web ser-
vices, in particular, the Organization for the Advancement of
Structured Information Standards (OASIS) has promulgated
a variety of specifications, such as WS-Security, WS-Trust,
SAML, etc., that relate to implementing security features
(e.g., authentication, trust building) between loosely coupled
systems. More particularly, WS-Security is a specification
that provides a basic framework for message level security in
web services. WS-Trust extends WS-Security and provides a
framework to establish or broker trust among disparate secu-
rity domains. SAML (Security Assertion Markup Language)
is an XML -based standard for representing security claims or
assertions. The aforementioned standards are intended for use
by enterprise level systems (e.g., large web servers, powerful
general purpose computers, etc.) as they rely upon Internet-
based technologies, such as HTTP, SOAP, XML, etc. Such
Internet-based technologies, however, require tremendous
resources, and, as such, do not scale to small embedded
systems having limited processing capabilities, limited
memory, etc.

SUMMARY

The following presents a simplified summary of the inno-
vation in order to provide a basic understanding of some

10

15

20

25

30

35

40

45

50

55

60

65

2

aspects described herein. This summary is not an extensive
overview of the disclosed subject matter. It is intended to
neither identify key or critical elements of the disclosed sub-
ject matter nor delineate the scope of the subject innovation.
Its sole purpose is to present some concepts of the disclosed
subject matter in a simplified form as a prelude to the more
detailed description that is presented later.

According to various aspects, a security model is described
that provides interoperability with foreign security domains
while remaining scalable to small embedded devices. A secu-
rity token service is provided, which is configured to issue,
renew, and/or validate security tokens in response to a token
request. A communication protocol, corresponding message
structures, and the security tokens are defined in accordance
with protocol buffer definitions.

According to a first aspect, the security token service is
integrated within an embedded device. The embedded device
can be an industrial automation device within an industrial
automation environment. The security token service, within
the device, can authenticate and authorize a user interfacing
directly with the embedded device. The embedded device
includes account information stored thereon to facilitate
authentication and authorization by the security token ser-
vice.

According to a second aspect, the security token service is
integrated within a network appliance. The security token
service can obtain token requests transmitted by devices via a
network. The network appliance can include account infor-
mation stored thereon to enable the security token service to
authenticate and authorize users based upon the token
requests. The security token service can issue security tokens
and transmit the tokens, via the network, to various devices.

According to a third aspect, the security token service can
be associated with a gateway device on a network. The gate-
way device communicates with an external entity to authen-
ticate and authorize users. The communication can be based
upon the WS-Trust specification. The gateway device can
translate security tokens and/or token requests between an
XML representation specified by WS-Trust and the protocol
buffer definitions.

The following description and the annexed drawings set
forth in detail certain illustrative aspects of the disclosed
subject matter. These aspects are indicative, however, of but a
few of the various ways in which the principles of the inno-
vation may be employed and the disclosed subject matter is
intended to include all such aspects and their equivalents.
Other advantages and distinctive features of the disclosed
subject matter will become apparent from the following
detailed description of the innovation when considered in
conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an example system
that employs a security token service to issue, renew, and
validate security tokens in accordance with various aspects.

FIG. 2 illustrates a block diagram of an example system in
which a security token service is employed to identify and
authenticate a user in accordance with various aspects.

FIG. 3 illustrates a flow diagram of an example method for
authenticating users and issuing security tokens in accor-
dance with various aspects.

FIG. 4 illustrates a block diagram of an embedded device
that utilizes a security token service to identify and authenti-
cate a user of the device according to one or more aspects.

US 9,386,015 B2

3

FIG. 5 illustrates a block diagram of an example system
that includes a network appliance providing issuance,
renewal, and validation of security tokens in accordance with
various aspects.

FIG. 6 illustrates a block diagram of an example system
that includes a gateway to external identity providers accord-
ing to one or more aspects.

FIG. 7 illustrates a block diagram of an example system
that includes a gateway to a security server that interacts with
external identity providers in accordance with various
aspects.

FIG. 8 illustrates a flow diagram of an example method for
bridging with foreign security domains in accordance with
various aspects.

FIG. 9 illustrates a schematic block diagram of an exem-
plary computing environment, according to an aspect

FIG. 10 illustrates a block diagram of a computer operable
to execute the disclosed aspects.

DETAILED DESCRIPTION

Various aspects are now described with reference to the
drawings, wherein like reference numerals are used to refer to
like elements throughout. In the following description, for
purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of one or
more aspects. It will be evident, however, that such aspect(s)
can be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to facilitate describing these
aspects.

Referring initially to FIG. 1, illustrated is an exemplary
system 100, according to an aspect. System 100 is configured
to utilize security tokens to facilitate identification, authenti-
cation, and authorization of users. In an aspect, a security
token includes a set of claims or assertions that specify a
variety of information. For instance, a security token can
include a name, a role, an authorization code, an indication
that the name is authenticated, a time of authentication, a list
of permitted actions, cryptographic key information, or the
like. It will be appreciated from the description below, how-
ever, that security tokens can include additional information
to that delineated above.

System 100 is configured to provide delegation of authen-
tication, authorization, etc, of users and can include a
requester 110 configured to obtain a security token from a
security apparatus 120. Requester 110 can be an entity con-
figured to interact with a user (not shown). Requester 110 can
employ security apparatus 120 to authenticate the user. In
accordance with one example, wherein system 100 is
deployed within an industrial automation environment,
requester 100 can be a industrial automation device or tool
such as, but not limited to, a controller (e.g., programmable
automation controller (PAC), programmable logic controller
(PLC), and so forth), a human machine interface (HMI), an
industrial machine, or the like.

Requester 110 obtains credential information from a user
desiring to access some functionality provided by requester
110. The credential information can be a username/password
pair, a security token, a Kerberos ticket, etc. Requester 110
issues a token request 130, to the security apparatus 120, that
includes at least a portion of the credential information. In
response, the security apparatus 120 can provide a security
token 140 to the requester 110. Security token 140 can indi-
cate, at least, whether the credential information is authentic.
According to additional aspects, the security token 140 can

10

15

20

25

30

35

40

45

50

55

60

65

4

include attributes of the user, permitted actions the user is
authorized to perform, a role of the user, an identity of the
user, and so on.

The requester 110 and the security apparatus 120 can uti-
lize protocol buffers to implement and convey the token
request 130 and the security token 140. Protocol buffers are a
language-neutral, platform-neutral, extensible mechanism to
serialize structured data for use in communications protocols.
One or more protocol messages can be defined that specify
how information is to be structured. Each protocol message
can include a set of name-value pairs respectively having a
name and a value type. Value types can include numbers (e.g.,
integers or floating point values), Booleans, strings, raw
bytes, and the like. In addition, value types can also include
other protocol messages. Accordingly, protocol buffers
enable information to be structured hierarchically.

Once protocol messages are defined, the definitions can be
run through a protocol buffer compiler to automatically gen-
erate data access mechanisms as well as serialization/de-
serialization mechanisms. The serialization/de-serialization
mechanisms are configured to convert a protocol message
object (e.g., an object instance of the protocol message popu-
lated with actual data) into a protocol buffer (e.g., raw bytes)
and convert the protocol buffer into the protocol message
object. The data access mechanisms facilitate retrieval and
setting of values associated with a particular name-value pair,
protocol message objects, in accordance with the structure of
the protocol messages.

With protocol buffers, a protocol message defining a struc-
ture for token request 130 can be created. The protocol mes-
sage corresponding to token request 130 can be compiled to
generate data access and serialization/de-serialization
mechanisms employable by requester 110 and security appa-
ratus 120. Similarly, a protocol message, defining a structure
for security token 140, can be provided and compiled to
generate corresponding data access and serialization/de-seri-
alization mechanisms.

In addition to structures for information (e.g., protocol
messages), protocols buffers enable definitions of services.
For example, a service can be established that utilized defined
protocol messages, such a token request protocol message
and a security token protocol message. The service definition
can be compiled to generate an abstract interface, which can
be implemented as part of a remote procedure call or other
communication protocol to exchange information between
multiple entities.

With a service defined and/or protocol messages for token
request 130 and security token 140, requester 110 can instan-
tiate a token request protocol message object and populate the
object with information such as the credential information.
The token request protocol message object can be serialized
into a series of raw bytes to generate token request 130.
Requester 110 can convey token request 130 to the security
apparatus 120 via a remote procedure call or other commu-
nication protocol.

Security apparatus 120 can receive token request 130 as a
series of raw bytes. Security apparatus 120, in an aspect, can
include a protocol buffer component 122 configured to man-
age protocol messages, such as token request 130 and security
token 140. The protocol buffer component 122 instantiates a
protocol message object based upon the corresponding pro-
tocol message of token request 130. Protocol buffer compo-
nent 122 de-serializes token request 130, obtained from
requester 110, and populates the instantiated protocol mes-
sage object with the de-serialized token request. Information

US 9,386,015 B2

5

contained within the de-serialized token request 130 (e.g.,
credential information) can be provided to a security token
service (STS) 124.

STS 124 is configured to issue, validate, and/or renew
security tokens. The security tokens include one or more
claims or assertions determined by STS 124 based upon cre-
dential information. According to an example, STS 124
obtains credential information from protocol buffer compo-
nent 122. The credential information can be extracted from
token request 130. STS 124 can authenticate the credential
information and issue a corresponding security token that
includes at least a claim indicating that the credential infor-
mation is authenticated.

Authentication can occur in accordance with a variety of
schemes. In one example, the credential information can
include a username and password. STS 124 can check the
username and password against a data store (not shown) that
retains user information. The data store can be associated
with security apparatus 120 or, as described in greater detail
below, associated with a remote entity such as an external
identity provider. In another example, the credential informa-
tion can include a security token previously issued from STS
124. STS 124 can issue a new token or renew the token
included in the credential information. In yet another
example, the credential information can include a security
token from another entity. STS 124 can issue a security token
based upon the claims in the provided token when the token is
issued from a trusted entity.

STS 124 can generate issued tokens in accordance with a
structure defined by a protocol message for security tokens.
Issued tokens, such as security token 140, can be serialized by
protocol buffer component 122 and conveyed to requester
110 in response to token request 130. The requester 110 can
de-serialize security token 140 and render access decisions
based at least in part on claims included in the security token
140. For instance, requester 110 can permit a user to perform
certain operations authorized by claims in the security token
140.

While shown as separate components in FIG. 1, it is to be
appreciated that protocol buffer component 122 can be
included in or combined with STS 124, such that STS directly
communicates with requester 110 in accordance with proto-
col buffer mechanisms. In addition, it is to be appreciated that
security apparatus 120 can be STS 124 itself. Further, addi-
tional security, such as encryption, digital signatures, or the
like, can be layered upon the message exchange between
requester 110 and security apparatus 120.

FIG. 2 illustrates a system 200 in which a security token
service is employed to identify and authenticate a user in
accordance with various aspects. As illustrated in FIG. 2,
system 200 can include a requester 210 configured to com-
municate with a security apparatus 220 to authenticate and/or
authorize a user accessing requester 210. In an aspect, secu-
rity apparatus 220 can be configured as a security token
service as described above. As a security token service, secu-
rity apparatus 220 is configured to issue, renew, and/or vali-
date security tokens. The security tokens can be utilized by
requester 210 to render and enforce access decisions with
respect to users.

In an aspect, requester 210 can include a user interface 212
configured to obtain input from a user and convey output to
the user. The user interface 212 can include a variety of
hardware and/or software components. For example, the user
interface 212 can include a keyboard, a mouse, a touch screen
or display screen displaying a graphical user interface (GUI)
generated by software applications, a microphone, speakers,
a video camera, etc.

40

45

50

55

6

Requester 210 can further include a protocol bufter 214
configured to structure information in accordance with pro-
tocol messages, such as token request 230 and security token
240, serialize protocol messages into series of bytes, de-
serialize byte streams into structured information, and extract
data from the structured information. Protocol buffer 214
facilitates communication between requester 210 and secu-
rity apparatus 220 through remote procedure calls or other
communication protocols.

In addition, requester 210 can include a cryptography com-
ponent 216 configured to provide cryptographic functions,
such as digital signatures, encryption, etc. In an aspect, cryp-
tography component 216 can digitally sign protocol mes-
sages generated by protocol buffer 214 prior to sending the
protocol messages to security apparatus 220. In addition,
cryptography component 216 can authenticate and integrity
check signed protocol messages received from security appa-
ratus 220.

According to another aspect, requester 210 can include an
access control component 218 configured to render access
decisions based, at least in part, on security tokens obtained
from the security apparatus 218. For instance, access control
component 218 can determine whether or not to grant access
to a user based upon the security tokens. In addition, access
control component 218 can restrict access to particular func-
tions or features based upon the security tokens. In an
example, access control component 218 can analyze a secu-
rity token and ascertain that a user is authenticated and can be
granted access. The access control component 218 can further
evaluate claims included in the security token to determine a
role associated with the user and/or identify authorized
actions the user permitted to initiate. Access control compo-
nent 218 can configure user interface 212 to facilitate enforce-
ment of access restrictions based upon the role of the user or
the authorized actions.

Security apparatus 220 can include a cryptography com-
ponent 222 configured to provide cryptographic functions,
such as digital signatures, encryption, etc. In an aspect, cryp-
tography component 222 can digitally sign protocol mes-
sages prior to sending to such messages to requester 210. In
addition, cryptography component 220 can authenticate and
integrity check signed protocol messages received from
requester 210. Security apparatus 220 can also include a
protocol buffer 224 configured to structure information in
accordance with protocol messages, such as token request
230 and security token 240, serialize protocol messages into
series of bytes, de-serialize byte streams into structured infor-
mation, and extract data from the structured information.
Protocol buffer 224, similar to protocol buffer 214 of
requester 210, facilitates communication between requester
210 and security apparatus 220 through remote procedure
calls or other communication protocols.

In accordance with another aspect, wherein security appa-
ratus 220 operates as an identity provider, an authentication
component 226 is provided. Authentication component 226 is
configured to verify credential information, which can be
provided to security apparatus 220 by requester 210 as part of
a token request. Authentication component 226 can query a
data store 227 that retains account information. Authentica-
tion component 226 can validate credential information when
such information is included and/or matches information in
data store 227.

A result of authentication by the authentication component
226, the token request processed by protocol buffer 224, and
credential information contained in the token request can be
provided to a token generation component 228. The token
generation component 228 is configured to issue security

US 9,386,015 B2

7

tokens, based at least in part, on the result of authentication,
the credential information and/or the token request. In one
aspect, token generation component 228 can issue protocol
buffer security tokens that conform to a structure defined by a
protocol message employable by protocol buffer mecha-
nisms. However, it is to be appreciated that token generation
component 228 can issue other tokens such as, for example, a
SAML token.

Referring to FIG. 3, in connection with FIG. 2, a method-
ology 300 related to authenticating a user and issuing a secu-
rity token is described. While, for purposes of simplicity of
explanation, the processes or methodologies are shown and
described as a series or number of acts, it is to be understood
and appreciated that the subject processes are not limited by
the order of acts, as some acts may, in accordance with the
subject processes, occur in different orders and/or concur-
rently with other acts from that shown and described herein.
For example, those skilled in the art will understand and
appreciate that a methodology could alternatively be repre-
sented as a series of interrelated states or events, such as in a
state diagram. Moreover, not all illustrated acts may be
required to implement a methodology in accordance with the
subject processes described herein.

At 302, a user, desiring to access requester 210, can input
credential information via user interface 212. At 304,
requester 210 can employ the protocol buffer 214 to generate
token request 230 that includes the credential information. In
an aspect, the token request 230 can information structured in
accordance with a protocol message defined in accordance
with the protocol buffer technology. At 306, the protocol
buffer 214 serializes token request 230 from a structured
object to a series of raw bytes.

At 308, cryptography component 216 can digitally sign
token request 230 to generate signed token request 232. Inone
example, cryptography component 216 can utilize public-key
cryptography to sign token request 232. For instance, cryp-
tography component 216 can hash token request 230 to gen-
erate a message digest. The message digest can be encrypted
with a private key to produce a signature, which is attached to
the token request 230 to generate the signed token request
232. At a receiver end, the signed token request 232 is sepa-
rated (e.g., the signature is extracted from token request 230).
The signature is decrypted with a public key paired to the
private key. In addition, the token request, with signature
removed, is hashed. The signed token request 232 is authen-
ticated and checked when the hash and the decrypted signa-
ture match. Public key cryptography is described herein as an
exemplary algorithm and it is appreciated that other crypto-
graphic algorithms can be employed and, further, it is
intended that the claims appended hereto are not limited to
public-key cryptography.

At 310, the signed token request 232 is sent to the security
apparatus 220. As described in more detail below, the signed
token request 232 can be conveyed to the security apparatus
220 via a variety of means depending on the specific imple-
mentation of security apparatus 220 and requester 210. For
example, request 210 can send the signed token request 232
via a remote procedure call, a pipe between processes, a
network connection, a hardware bus, a method call, etc.

At 312, cryptography component 222 of security apparatus
220 can verify the signed token request 232 and recover a
token request 234. As described above, cryptography compo-
nent 222 can, in one example, employ a public key associated
with requester 210 and paired with a private key of requester
210. At314, the token request 234 is de-serialized by protocol
buffer 224 to convert the series of raw bytes into a structured
object that includes the credential information. At 316, secu-

10

15

20

25

30

35

40

45

50

55

60

65

8

rity apparatus 220 can employ the protocol buffer 224 to
extract the credential information from the structure object
representation of token request 234. At 318, security appara-
tus 220 authenticates the credential information. For
example, authentication component 226 can query the data
store 227 with the credential information to determine if the
credential information corresponds to a valid user account. A
result of authentication can be provided to the token genera-
tion component 228 where, at 320, a security token 244 is
generated. At 322, protocol buffer 224 can serialize security
token 244 into a series of bytes. At 324, security apparatus
220 can employ the cryptography component 222 to digitally
sign security token 244 to generate a signed security token
242. At 326, the signed security token 244 is sent to the
requester 210. At 328, cryptography component 216 of
requester 210 verifies the digital signature of signed security
token 242 and recovers security token 240. At 330, the pro-
tocol buffer 214 de-serializes security token 240 and, at 332,
access control component 332 can render access control deci-
sions based at least in part on security token 240.

Referring to FIGS. 4-7, illustrated are example systems
depicting various implementations of the security model
described above within an industrial automation environment
according to one or more aspects. In these example systems,
an industrial automation device operates as a requester as
described above. As will become evident with these example
systems, the security model described above can operate at
various levels within the industrial automation environment,
from a small-scale integrated environment of a single device
to large-scale network wide environments. Accordingly, the
security model can provide security within a home domain
and, also, can be extended to provide interoperability with
foreign domains.

In FIGS. 4-7, and the associated descriptions, a device can
be any suitable industrial automation device (e.g., a machine
(press, stamp, conveyor, robot, etc.), a controller, an HMI, and
so forth) or any other suitable computing device (e.g., a per-
sonal computer, a laptop, a mobile device, etc.). In addition, a
security apparatus described below in connection with FIGS.
4-7 can be substantially similar to and/or perform similar
functionality as security apparatus 110 and 210. Moreover,
interactions between devices and security apparatus can
occur in a manner consistent with system 100, system 200,
and method 300 described supra with respect to FIGS. 1-3.

FIG. 4 depicts an example system 400 that includes an
embedded device 402 operating as a requester. In an aspect,
device 402 can be an embedded system coupled to an indus-
trial automation device such as, but not limited to, a computer,
an HMI, a press, a stamping machine, a conveyor, a robot, or
any other industrial machine or apparatus deployable within a
factory or processing facility.

Device 402 can include a processing unit 404, a system
memory 406, a user interface 418, a machine interface 420,
and a network adapter 422 interconnected via a bus 422.
System memory 406 can include a non-volatile memory, such
as ROM 408, and a volatile memory, such as RAM 410.
System memory 406 can also include a persistent storage 412,
which can include substantially any tangible, non-volatile
computer-readable storage media. For instance persistent
storage 412 can include media such as, but not limited to,
flash memory, a hard disk, a solid state disk drive, a magnetic-
based media (e.g., tape, etc.), an optical-based media (e.g.,
CD-ROM, DVD, Blu-Ray, etc.), or the like.

System memory 406 can retain software and/or firmware
programs such as applications 414 and operating system 416.
In an aspect, applications 414 and/or operating system 416
can be transferred from ROM 408 and/or persistent storage

US 9,386,015 B2

9

412 into RAM 410. Processing unit 404 can execute the
applications 414 and operating system 416 from RAM 410 to
implement functionality of device 402 and provide interac-
tion with users. For instance, applications 414 and/or operat-
ing system 416 can generate a graphical user interface, which
is displayed to users via user interface 418.

Device 402 can interface with various mechanical and
electrical hardware components of the associated industrial
automation device via machine interface 420. Further, device
402 can communicate via a communication network (e.g., a
LAN, a DeviceNet, a control network, a WAN, the Internet,
etc.) via network adapter 422.

In an aspect, device 402 can utilize an integrated security
component 426 to authenticate users. Security component
426 can be integrated onto a circuit board of device 402,
wherein the circuit board includes bus 424 and supports the
various hardware components (e.g., processing unit 404, sys-
tem memory 406, machine interface 420, network adapter
422, and user interface 418). According to one aspect, secu-
rity component 426 can be coupled to bus 424 to communi-
cate with processing unit 404, user interface 418, system
memory 406, and/or any applications 414 and operating sys-
tem 416 executed therefrom. Security component 426 can
include an embedded sub-processor (not shown) and memory
unit (not shown) to implement security functionality within a
secured sub-environment of device 402. In another aspect,
security component 426 can implemented via an application
414 and/or operating system 416.

Security component 426 can be substantially similar to and
perform similar functionality as security apparatus 110 and
210 described above with reference to FIGS. 1 and 2. For
example, security component 426 can issues security tokens
in response to token requests that include credential informa-
tion, as described above.

In an example, a user can supply credential information via
user interface 418. For instance, the user can enter a username
and password via a login interface of user interface 418, or the
user can supply credential information via other mechanisms
(e.g., smart card, USB device, an electronic key fob, etc.). The
applications 414 and/or operating system 416 can include
access control sub-routines that incorporate the credential
information into an information structure pre-defined based
upon a protocol message definition for a token request. The
token request, including the credential information, can be
serialized and sent, by the applications and/or operating 416
via an inter-process communication to an application imple-
menting security component 426 or via bus 424 to security
component 426 integrated onto the circuit board of device
402. The security component 426 de-serializes the token
request, checks the credential information, and generates a
security token. The security token can include a set of asser-
tions as described above, and can be organized into a structure
pre-defined by another protocol message definition. The
security token can be serialized and returned to the requesting
entity (e.g., applications 414 and/or operating system 416).
The security token is de-serialized and evaluated to render
access decisions related to the user. If access is granted, the
security token can include additional assertions that define a
level of access to grant to the user. Applications 414 and/or
operating system 416 provide interactions with the user in
accordance with the defined level of access.

FIG. 5 depicts an example system 500 that includes a
network appliance providing issuance, renewal, and valida-
tion of security tokens in accordance with various aspects.
System 500 can include a security apparatus 502 accessible,
via network 506, by device (requester) 504. In an example,
security apparatus 502 can be similar to security apparatus

5

10

15

20

25

30

35

40

45

50

55

60

65

10
110 and/or 210 described supra. In addition, device 504 can
be similar to requester 110, requester 210, and/or device 402
described herein.

In an aspect, device 504 can obtain credential information
that requires authentication. Device 504, using protocol
buffer mechanisms, can transmit the credential information
as a token request to security apparatus 502, via network 504.
Security apparatus 502 receives the token request, validates
the included credential information, and issues a security
token based thereupon. Security apparatus 502 can return the
security token to device 504, using protocol buffer mecha-
nisms. Device 504 can analyze the security and determine a
level of access to provide to a user associated with the cre-
dential information. As shown in FIG. 5, other devices, such
as devices 508, 510, and 512, are coupled to network 506. In
an aspect, devices 508, 510, and 512 are configured to operate
as requesters, as described above. The devices 508, 510, and
512 can submit token requests to security apparatus 502 and
obtain security tokens therefrom.

Turning to FIG. 6, illustrated is an example system 600 in
accordance with various aspects. In an aspect, system 600 can
include a device 602 configured to request a security token
from a security apparatus 606 via a network 604. In the
request, device 602 can include credential information pro-
vided by a user. In an aspect of system 600, the credential
information can be associated with a domain for which secu-
rity apparatus 606 does not retain associated account infor-
mation. Instead of issuing a security token directly to device
602, security apparatus 606 can operate as a delegate or proxy
and obtain a security token from an external identity provider
612. External identity provider 612 can be a directory server,
such as an Active Directory server, an LDAP server, etc., a
UNIX domain server, a trusted third party authentication
service, or the like.

According to an aspect, security apparatus 606 includes a
gateway component 608 configured to request and obtain a
security token from the external identity provider 612. Gate-
way component 608 can request a token from the external
identity provider 612 in accordance with the WS-Trust speci-
fication for web services. Accordingly, gateway component
608 can obtain a SAML security token from the external
identity provider. Security apparatus 606 includes a converter
610 that translates the SAML security token into a protocol
buffer security token. The security apparatus 606 can return
the protocol buffer security token to device 602 via network
604.

Referring now to FIG. 7, illustrated is an example system
700 in accordance with various aspects. In an aspect, system
700 can include a device 702 configured to request a security
token via a network 704. Device 702 sends a token request,
which includes credential information, to a gateway appara-
tus 706. The gateway apparatus employs the credential infor-
mation as part of WS-Trust exchange, performed by a WS-
Trust component 710, with a security server 712. The security
server 712 includes a security token service 714 and a direc-
tory server 716. The security token service 714 can issue,
renew, or validate security tokens.

According to an example, security token service 714 and/
or security server 712 does not retain account information
corresponding to the credential information. Accordingly,
security token service 714 delegates authentications to direc-
tory server 716, which accesses an external identity provider
718 to validate the credential information. Once validated, the
security token service 714 can issue a security token and
return the token to the WS-Trust component 710 of gateway
apparatus 706.

US 9,386,015 B2

11

In another aspect, the security token from the security
token service 714 can be a SAML token. Accordingly, gate-
way apparatus includes a converter 708 configured to trans-
late the SAML security token into a protocol buffer security
token. The gateway apparatus 706 can return the protocol
buffer security token to device 702 via network 704.

Referring to FIG. 8, a method 800 for bridging with foreign
security domains is illustrated. At 802, a token request is
obtained from a device. At 804, the token request is employed
to send a second token request to an external identity provider.
In an aspect, the first token request can in a protocol buffer
format utilized by the device and the second token request can
be in an XML format specified in the WS-Trust standard
utilized by web services and enterprise systems. At 806, a
security token is received from the external identity provider.
In an example, the security token can be a SAML security
token. However, it is to be appreciated that the security token
can be formatted as a Kerberos ticket, an X.509 token, or the
like. At 808, the received security token is converted to a
format recognizable by the device. According to an aspect,
the recognizable format can be a protocol buffer encoding of
a security token. At 810, the protocol buffer encoding of the
security token is conveyed to the device.

In order to provide additional context for implementing
various aspects of the claimed subject matter, FIGS. 9 and 10
and the following discussion is intended to provide a brief,
general description of a suitable computing environment in
which the various aspects of the subject innovation may be
implemented. For example, the host application as well as the
extensible framework can be implemented in such suitable
computing environment. While the description above is in the
general context of computer-executable instructions of a
computer program that runs on a local computer and/or
remote computer, those skilled in the art will recognize that
the subject innovation also may be implemented in combina-
tion with other program modules. Generally, program mod-
ules include routines, programs, components, data structures,
etc., that perform particular tasks and/or implement particular
abstract data types.

Generally, program modules include routines, programs,
components, data structures, etc., that perform particular
tasks or implement particular abstract data types. Moreover,
those skilled in the art will appreciate that the claimed subject
matter can be practiced with other computer system configu-
rations, including single-processor or multiprocessor com-
puter systems, minicomputers, mainframe computers, as well
as personal computers, hand-held computing devices, micro-
processor-based or programmable consumer electronics, and
the like, each of which can be operatively coupled to one or
more associated devices.

The illustrated aspects may also be practiced in distributed
computing environments where certain tasks are performed
by remote processing devices that are linked through a com-
munications network. In a distributed computing environ-
ment, program modules can be located in both local and
remote memory storage devices.

Computing devices typically include a variety of media,
which can include computer-readable storage media and/or
communications media, which two terms are used herein
differently from one another as follows. Computer-readable
storage media can be any available storage media that can be
accessed by the computer and includes both volatile and
nonvolatile media, removable and non-removable media. By
way of example, and not limitation, computer-readable stor-
age media can be implemented in connection with any
method or technology for storage of information such as
computer-readable instructions, program modules, struc-

40

45

50

12

tured data, or unstructured data. Computer-readable storage
media can include, but are not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disk (DVD) or other optical disk stor-
age, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or other tangible and/or
non-transitory media which can be used to store desired infor-
mation. Computer-readable storage media can be accessed by
one or more local or remote computing devices, e.g., via
access requests, queries or other data retrieval protocols, for a
variety of operations with respect to the information stored by
the medium.

Communications media typically embody computer-read-
able instructions, data structures, program modules or other
structured or unstructured data in a data signal such as a
modulated data signal, e.g., a carrier wave or other transport
mechanism, and includes any information delivery or trans-
port media. The term “modulated data signal” or signals
refers to a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in one
or more signals. By way of example, and not limitation,
communication media include wired media, such as a wired
network or direct-wired connection, and wireless media such
as acoustic, RF, infrared and other wireless media.

Referring now to FIG. 9, there is illustrated a schematic
block diagram of an exemplary computer compilation system
operable to execute the disclosed architecture. The system
900 includes one or more client(s) 902. The client(s) 902 can
be hardware and/or software (e.g., threads, processes, com-
puting devices). In one example, the client(s) 902 can house
cookie(s) and/or associated contextual information by
employing one or more features described herein.

The system 900 also includes one or more server(s) 904.
The server(s) 904 can also be hardware and/or software (e.g.,
threads, processes, computing devices). In one example, the
servers 904 can house threads to perform transformations by
employing one or more features described herein. One pos-
sible communication between a client 902 and a server 904
can be in the form of a data packet adapted to be transmitted
between two or more computer processes. The data packet
may include a cookie and/or associated contextual informa-
tion, for example. The system 900 includes a communication
framework 906 (e.g., a global communication network such
as the Internet) that can be employed to facilitate communi-
cations between the client(s) 902 and the server(s) 904.

Communications can be facilitated via a wired (including
optical fiber) and/or wireless technology. The client(s) 902
are operatively connected to one or more client data store(s)
908 that can be employed to store information local to the
client(s) 902 (e.g., cookie(s) and/or associated contextual
information). Similarly, the server(s) 904 are operatively con-
nected to one or more server data store(s) 910 that can be
employed to store information local to the servers 904.

With reference to FIG. 10, an exemplary environment 1000
for implementing various aspects described herein includes a
computer 1002, the computer 1002 including a processing
unit 1004, a system memory 1006 and a system bus 1008. The
system bus 1008 couples to system components including,
but not limited to, the system memory 1006 to the processing
unit 1004. The processing unit 1004 can be any of various
commercially available processors. Dual microprocessors
and other multi-processor architectures may also be
employed as the processing unit 1004.

The system bus 1008 can be any of several types of bus
structure that may further interconnect to a memory bus (with
or without a memory controller), a peripheral bus, and a local
bus using any of a variety of commercially available bus

US 9,386,015 B2

13

architectures. The system memory 1006 includes read-only
memory (ROM) 1010 and random access memory (RAM)
1012. A basic input/output system (BIOS) is stored in a non-
volatile memory 1010 such as ROM, EPROM, EEPROM,
which BIOS contains the basic routines that help to transfer
information between elements within the computer 1002,
such as during start-up. The RAM 1012 can also include a
high-speed RAM such as static RAM for caching data.

The computer 1002 further includes an internal hard disk
drive (HDD) 1014 (e.g., EIDE, SATA), which internal hard
disk drive 1014 may also be configured for external use in a
suitable chassis (not shown), a magnetic floppy disk drive
(FDD) 1016, (e.g., to read from or write to a removable
diskette 1018) and an optical disk drive 1020, (e.g., reading a
CD-ROM disk 1022 or, to read from or write to other high
capacity optical media such as the DVD). The hard disk drive
1014, magnetic disk drive 1016 and optical disk drive 1020
can be connected to the system bus 1008 by a hard disk drive
interface 1024, a magnetic disk drive interface 1026 and an
optical drive interface 1028, respectively. The interface 1024
for external drive implementations includes at least one or
both of Universal Serial Bus (USB) and IEEE-1394 interface
technologies. Other external drive connection technologies
are within contemplation of the subject disclosure.

The drives and their associated computer-readable media
provide nonvolatile storage of data, data structures, com-
puter-executable instructions, and so forth. For the computer
1002, the drives and media accommodate the storage of any
data in a suitable digital format. Although the description of
computer-readable media above refers to a HDD, a remov-
able magnetic diskette, and a removable optical media such as
aCD or DVD, it should be appreciated by those skilled in the
art that other types of media which are readable by a com-
puter, such as zip drives, magnetic cassettes, flash memory
cards, cartridges, and the like, may also be used in the exem-
plary operating environment, and further, that any such media
may contain computer-executable instructions for perform-
ing the methods described herein.

A number of program modules can be stored in the drives
and RAM 1012, including an operating system 1030, one or
more application programs 1032, other program modules
1034 and program data 1036. All or portions of the operating
system, applications, modules, and/or data can also be cached
in the RAM 1012. It is appreciated that the claimed subject
matter can be implemented with various commercially avail-
able operating systems or combinations of operating systems.

A user can enter commands and information into the com-
puter 1002 through one or more wired/wireless input devices,
e.g., akeyboard 1038 and a pointing device, such as a mouse
1040. Other input devices (not shown) may include a micro-
phone, an IR remote control, a joystick, a game pad, a stylus
pen, touch screen, or the like. These and other input devices
are often connected to the processing unit 1004 through an
input device interface 1042 that is coupled to the system bus
1008, but can be connected by other interfaces, such as a
parallel port, a serial port, an IEEE-1394 port, a game port, a
USB port, an IR interface, etc.

A monitor 1044 or other type of display device is also
connected to the system bus 1008 via an interface, such as a
video adapter 1046. In addition to the monitor 1044, a com-
puter typically includes other peripheral output devices (not
shown), such as speakers, printers, etc.

The computer 1002 may operate in a networked environ-
ment using logical connections via wired and/or wireless
communications to one or more remote computers, such as a
remote computer(s) 1048. The remote computer(s) 1048 can
be a workstation, a server computer, a router, a personal

20

30

40

45

55

14

computer, portable computer, microprocessor-based enter-
tainment appliance, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the computer 1002, although, for pur-
poses of brevity, only a memory/storage device 1050 is illus-
trated. The logical connections depicted include wired/wire-
less connectivity to a local area network (LAN) 1052 and/or
larger networks, e.g., a wide area network (WAN) 1054. Such
LAN and WAN networking environments are commonplace
in offices and companies, and facilitate enterprise-wide com-
puter networks, such as intranets, all of which may connect to
a global communications network, e.g., the Internet.

When used in a LAN networking environment, the com-
puter 1002 is connected to the local network 1052 through a
wired and/or wireless communication network interface or
adapter 1056. The adapter 1056 may facilitate wired or wire-
less communication to the LAN 1052, which may also
include a wireless access point disposed thereon for commu-
nicating with the wireless adapter 1056.

When used in a WAN networking environment, the com-
puter 1002 can include a modem 1058, or is connected to a
communications server on the WAN 1054, or has other means
for establishing communications over the WAN 1054, such as
by way of the Internet. The modem 1058, which can be
internal or external and a wired or wireless device, is con-
nected to the system bus 1008 via the serial port interface
1042. In a networked environment, program modules
depicted relative to the computer 1002, or portions thereof,
can be stored in the remote memory/storage device 1050. It
will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers can be used.

The computer 1002 is operable to communicate with any
wireless devices or entities operatively disposed in wireless
communication, e.g., a printer, scanner, desktop and/or por-
table computer, portable data assistant, communications sat-
ellite, any piece of equipment or location associated with a
wirelessly detectabletag (e.g., a kiosk, news stand, restroom),
and telephone. This includes at least Wi-Fi and Bluetooth™
wireless technologies. Thus, the communication can be a
predefined structure as with a conventional network or simply
an ad hoc communication between at least two devices.

Wi-Fi, or Wireless Fidelity, is a wireless technology similar
to that used in a cell phone that enables a device to send and
receive data anywhere within the range of a base station.
Wi-Fi networks use IEEE-802.11 (a, b, g, etc.) radio tech-
nologies to provide secure, reliable, and fast wireless connec-
tivity. A Wi-Fi network can be used to connect computers to
each other, to the Internet, and to wired networks (which use
IEEE-802.3 or Ethernet). Wi-Fi networks operate in the unli-
censed 2.4 and 5 GHz radio bands, atan 13 Mbps (802.11a) or
54 Mbps (802.11b) data rate, for example, or with products
that contain both bands (dual band). Thus, networks using
Wi-Fi wireless technology can provide real-world perfor-
mance similar to a 10 BaseT wired Ethernet network.

As utilized herein, terms “component,” “system,” “cre-
ator,” “module,” “node,” “framework,” “application,” “trans-
lator,” and the like, are intended to refer to a computer-related
entity or solid-state electronic, either hardware, software
(e.g., in execution), and/or firmware. For example, a compo-
nent can be a process running on a processor, a processor, an
object, an executable, a program, and/or a computer. By way
of'illustration, both an application running on a server and the
server can be a component. One or more components can
reside within a process and a component can be localized on
one computer and/or distributed between two or more com-

29 <

US 9,386,015 B2

15

puters. In addition, a component can be hardware or solid
state electronic such as an electronic circuit, a semiconductor
device, etc.
Moreover, the word “exemplary” is used herein to mean
serving as an example, instance, or illustration. Any aspect or
design described herein as “exemplary” is not necessarily to
be construed as preferred or advantageous over other aspects
or designs. Rather, use of the word exemplary is intended to
present concepts in a concrete fashion. As used in this appli-
cation, the term “or” is intended to mean an inclusive “or”
rather than an exclusive “or”. That is, unless specified other-
wise, or clear from context, “X employs A or B” is intended to
mean any of the natural inclusive permutations. That is, if X
employs A; X employs B; or X employs both A and B, then “X
employs A or B” is satisfied under any of the foregoing
instances. In addition, the articles “a” and “an” as used in this
application and the appended claims should generally be
construed to mean “one or more” unless specified otherwise
or clear from context to be directed to a singular form.
What has been described above includes examples of
aspects of the disclosed subject matter. It is, of course, not
possible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing the dis-
closed subject matter, but one of ordinary skill in the art may
recognize that many further combinations and permutations
of'the disclosed subject matter are possible. Accordingly, the
disclosed subject matter is intended to embrace all such alter-
ations, modifications and variations that fall within the spirit
and scope of the appended claims. Furthermore, to the extent
that the terms “includes,” “has,” or “having,” or variations
thereof, are used in either the detailed description or the
claims, such terms are intended to be inclusive in a manner
similar to the term “comprising” as “comprising” is inter-
preted when employed as a transitional word in a claim.
What is claimed is:
1. A network appliance, comprising:
a processor;
a memory communicatively coupled to processor, the
memory having stored therein computer-executable
instructions, comprising:
a protocol buffer component configured to:
receive a first series of bytes representing a token request
having credential information from a requestor;

de-serialize the first series of bytes into a token request
protocol message object retaining the credential
information, wherein the token request protocol mes-
sage object is formatted according to a Protocol
Buffer definition;

convert the token request protocol message object into a
second token request protocol message object having
a first format associated with an external entity; and

a security token service configured to:

send the second token request protocol message object
to the external entity;

receive a first protocol buffer security token, having a
representation not formatted according to the Proto-
col Buffer definition, from the external entity;

convert the first protocol buffer security token into a
second protocol buffer security token structured in
accordance with the Protocol Buffer definition;

serialize the second protocol buffer security token into a
second series of bytes; and

communicate the second series of bytes as a response to
the token request.

2. The network appliance of claim 1, wherein the Protocol
Buffer definition is programming language neutral, execution
platform neutral, and extensible.

10

15

20

25

30

35

40

45

50

55

60

65

16

3. The network appliance of claim 1, further comprising a
cryptography component configured to verify a digital signa-
ture attached to the token request.
4. The network appliance of claim 3, wherein the cryptog-
raphy component is further configured to digitally sign the
first protocol buffer security token.
5. The network appliance of claim 1, wherein the security
token component further comprises an authentication com-
ponent configured to validate the credential information with
a data store that stores account information.
6. The network appliance of claim 1, further comprising a
protocol buffer compiler configured to compile the Protocol
Buffer definition into a serialization mechanism configured to
serialize token request protocol message objects into series’
of bytes.
7. The network appliance of claim 1, further comprising a
protocol buffer compiler configured to compile the Protocol
Buffer definition into a de-serialization mechanism config-
ured to de-serialize series of bytes into token request protocol
message objects.
8. The network appliance of claim 1, further comprising a
protocol buffer compiler configured to compile the Protocol
Buffer definition into a data access mechanism configured to
access data in token request protocol message objects.
9. A system, comprising:
a processor;
a memory communicatively coupled to processor, the
memory having stored therein computer-executable
instructions, comprising:
a gateway component configured to:
receive a first series of bytes representing a token request
having credential information from a requestor;

de-serialize the first series of bytes into a token request
protocol message object retaining the credential
information, wherein the token request protocol mes-
sage object is formatted according to a Protocol
Buffer definition;

convert the token request protocol message object into a
second token request protocol message object having
a first format associated with an external entity;

send the second token request protocol message object
to the external entity;

receive a first protocol buffer security token, having a
representation not formatted according to the Proto-
col Buffer definition, from the external entity;

convert the first protocol buffer security token into a
second protocol buffer security token structured in
accordance with the Protocol Buffer definition;

serialize the second protocol buffer security token into a
second series of bytes; and

communicate the second series of bytes as a response to
the token request.

10. The system of claim 9, wherein the gateway component
is further configured to verify a digital signature attached to
the token request.

11. The system of claim 10, wherein the gateway compo-
nent is further configured to digitally sign the first protocol
buffer security token.

12. The system of claim 9, wherein the gateway component
is further configured to compile the Protocol Buffer definition
into a serialization mechanism configured to serialize token
request protocol message objects into series’ of bytes.

13. The system of claim 9, wherein the gateway component
is further configured to compile the Protocol Buffer definition
into a de-serialization mechanism configured to de-serialize
series of bytes into token request protocol message objects.

US 9,386,015 B2

17

14. The system of claim 9, wherein the gateway component
is further configured to compile the Protocol Buffer definition
into a data access mechanism configured to access data in
token request protocol message objects.

15. A method, comprising:

obtaining, by a security apparatus including a processor, a

token request, as a series of bytes, that includes creden-
tial information to be authenticated;
de-serializing, by the security apparatus, the series of bytes
to obtain the token request as an object structured in
accordance with a Protocol Buffer definition;

converting, by the security apparatus, the token request,
structured in accordance with the Protocol Buffer defi-
nition, into a second token request having a format asso-
ciated with an external entity;

sending, by the security apparatus, the second token

request to the external entity;
receiving, by the security apparatus, a first security token,
having a representation not formatted according to the
Protocol Buffer definition, from the external entity;

converting, by the security apparatus, the first security
token into a second security token structured in accor-
dance with the Protocol Buffer definition;

serializing, by the security apparatus, the second security

token into a byte stream; and

10

15

20

18

communicating, by the security apparatus, the byte stream

as a response to the token request.

16. The method of claim 15, further comprising verifying,
by the security apparatus, a digital signature attached to the
token request.

17. The method of claim 16, further comprising, by the
security apparatus, digitally signing the first protocol buffer
security token.

18. The method of claim 15, further comprising compiling,
by the security apparatus, the Protocol Buffer definition into
a serialization mechanism configured to serialize objects
structured in accordance with the Protocol Buffer definition
into series” of bytes.

19. The method of claim 15, further comprising compiling,
by the security apparatus, the Protocol Buffer definition into
a de-serialization mechanism configured to de-serialize byte
streams into objects structured in accordance with the Proto-
col Buffer definition.

20. The method of claim 15, further comprising compiling,
by the security apparatus, the Protocol Buffer definition into
a data access mechanism configured to access data in objects
structured in accordance with the Protocol Buffer definition.

#* #* #* #* #*

